
sufficient here to regulate the length of the template arm close to the curvilinear bound- 
ary. This possibility is ensured by simple change in the rules of random particle motion 
over orthogonal trajectories. In Fig. i, this adaptive FDM template is "tied" to point B. 
If the adaptive template (AT) is also systematically rotated around the point B, the con- 
tributions of other boundary points may be taken into account. As in SRM, several stop 
frames are used to achieve acceptable accuracy, with subsequent averaging of the results. 
Table 1 gives the results of calculations using AT for four stop frames. Comparison of the 
two simplified approaches shows that the additional path in the random-motion scheme en- 
riches the information at the given point and, with the same number of stop frames, increas- 
es the calculation accuracy, as a rule. 

NOTATION 

U(M), temperature at point M of region ~; 8~, boundary of region; US, temperature at 
boundary point 8; ms/m, relative frequency of absorption of moving particle at point 8; 
~8' baricentric coordinates of point A in simplex. 
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THERMAL HYSTERESIS IN NONLINEAR MEDIA 

O. N. Shablovskii UDC 536.2.01 

One-dimensional thermal relaxation processes in mediawith nonlinear thermo- 
physical properties are treated. Dynamic hysteresis is investigated theo- 
retically in continuous and discontinuous nonstationary temperature fields. 
Boundary conditions are analyzed, for which a high-flow hysteresis process 
is realized. A quantitative estimate is given of irreversible variations in 
the material thermal state. Examples are given of constructing hysteresis 
branches. New properties are established for thermal shock waves propagating 
along the relaxing background. 

It is well-known that hysteresis effects are observed in various physical processes 
(magnetic hysteresis [I], elastic hysteresis [2], etc.), and are characterized by a non- 
unique dependence between the quantities determining the material state and the external 
conditions of action. As applied to heat and mass transfer, these effects were noted in 
[3-6]. The mathematical methods of analyzing systems with nonlinear hysteresis were dis- 
cussed in [7]. 

The purpose of the present study is construction of examples of analytic description 
of dynamic thermal hysteresis, realized during fast flow processes, both in continuous and 
discontinuous thermal fields. The mathematical model is based on the energy equation and 
on the generalized Fourier law [8, 9], written in dimensionless form 
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cT tq -  q~,.+, v �9 . q = O ,  q q - s  (I) 
X 

where q = q/qb, x = ~/Xb, ~ = ~/tb, etc. The variable scales are related by kbT b = qbXb, 
(Xb/tb ~= = Ib/tbeb, guaranteeing invariance of the_ dimensional and dimensionless forms of 
(1-). 

I. Hysteresis in a Continuous Thermal Wave. For v = O, y ~ const Eqs. (i) have an exact 
solution [10, Ii], containing one arbitrary function ~(m): 

a = a 1 (t t  -31- k l )  - z ,  al : :  [~/~, u'  (73 = c, a = Z/c; a,, [1' ~1 - -  const, ( 2 )  

x(u,  ~) = I[1/(u + kl) l + ; '(o)), to =: (u + kl)/x, x = exp ( - -  l/?), ( 3 )  

vq (u, ~) = i - -  ~; (~,,) + (u + k~) ;' (~). (4)  

In what follows, to denote the arguments of the function ~ we use the letters ~, E, z; in 
all these cases the symbol ~ is retained. In relation (2), for k I = 0 one can use foc the 
thermophysical properties the power law dependences I = liTnl, c = ciTn2, nl + n2 = -l, 
llciy = (i + n2)2fl 2. If kl x 0, we have from (2) 

= ?c [f~ -b (A/f,)] ~, [~ = - -  [~/?kl, A" (T) ~= ~ (T). 

F o r  e x a m p l e :  

= % l e x p ( n l T  ), c = q e x p ( - - n ~ T ) ,  k / h = - - q ,  ~ c ~ ? = ( n ~ f ~ )  z. 

From the fixed wall 

x,: = O, gq,,~ = -- %;$ (e), %~ = -- fl (d~/de) -1, a = In I(u,, 4- kO/'r] 

and  a l o n g  t h e  r e l a x i n g  b a c k g r o u n d  ( f l  > 0 ,  Ix[  < ~ ,  a < ~ )  

uo + kl = L (x + 1~)-', VVo = f ,  § �9 I~oC' (tOo) - -  ; (~Oo)1, t1 = - -  ; '  (~o)  

let there propagate a continuous thermal wave to the right 

~0 6 , 

(5)  

- - m o = c o n s t ,  x o + l l = f l / m o ~ ,  x g = O .  

If at the boundary x = H I > 0 the temperature is given by the equality u0(H x) + kz = 
then the distance Hi occurs in the wave after a time 

t l = - - g l n 5 ,  H 1 m 0 = f l ( 5 - 1 - - 1 ) ,  0 < 5 < 1 .  ( 6 )  

It is implied that the solution (2)-(5) can be considered on a finite time interval [0, tl], 
equal to the duration of several relaxation periods y. The selection of the functions ~(~) 
characterizes the parametric representation (5) of the thermal regime at the wall. 

We analyze the relation between the temperature gradient and the specific flow al~ng 
the isotherm u(T i) + kl = b > 0, T i = const for the case 

( c3~1  = t 3 - 4 - A c o s ( l z + [ ~ ) ,  z = l n t , ~ ,  B < O ,  A > O ,  I > 0 .  
\ , U l ~ l l  f 

From E q s .  ( 3 ) ,  ( 4 )  we f i n d  (~01 - c o n s t ,  Bz - bB = f l / b ) :  

.~ (z) = [r -k (z - -  1) B, q- Ab (sin y - -  l cos g) l - '  (1 q- lz) -I] exp z, ( 7 ) 

"l'q~ = Bib -[- [1 + dbZ (cos y -[- l sin tj) (1 4- 12) -~, 

g = l z q - ~ = o ~ 4 - ( l t / ? ) ,  ( ~ - - [ ~ ) / l = l n b ,  p==ls - [ - l~ .  ( 8 )  

Hence we obtain a simple relation between the isotherm rate N i > 0 and the temperature 

gradient (Tx) i = (Ux)i/ci: 

\-$fu/~ (9)  
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�9 . =A6Zn Fig. i. Scheme of dynamic branch of 
thermal hysteresis at the isotherm. 

This implies that the expression for N i consists of a constant term and a function varying 
with time harmonically. Taking into account (6), we assume that the period O of these os- 
cillations does not exceed 7: s > 2~, t b < ~. Considering the expression 

Q ~- (~qi - -  [1 - -  bB1) (I + l 2) = Ab z (n +_ l V 1 - -  n 2 ) ,  n = COS y, 

we see that the branch of dynamic thermal hysteresis in the (n, Q) plane has the form of 
an ellipse (Fig. i) with area S i = ~Ab2s 

A quantitative estimate of the irreversible variations of the thermal state of the 
body during a period % can also be obtained by using the expression for the entropy produc- 
tion per second per unit volume [12]: o = (q + 7qt)(i/T) x. Choosing the relaxation com- 
ponent in this equation 

= ?q, (1/T)~ ( 1 0 )  

along the isotherm, we find that the area of the hysteresis branch equals 

Si - A(1-~-12). C ~idt l ciT~. 
2 

0 

The  b o u n d a r y  c o n d i t i o n s  a t  t h e  w a l l ,  f o r  w h i c h  t h e  d e p e n d e n c e s  ( 8 ) ,  ( 9 )  a r e  r e a l i z e d ,  
are described by Eqs. (5), (7) for e e [e ~ 0] , ~0 = inb < 0, while the solution possesses 
the properties : 

q ~ > O ,  u ~ ( t ) > O , - - [ ~  ( , ~ - + - A b ] - ~ - - k ~ > t t r 1 7 6 1 7 6  
l ] 

0 < N~ < Wo, Ox/Ou < O, q~ = - -  ( f / b )  - -  Bls ~ - -  Abl -~ sin pO < O. 

The quantities A, B satisfy the system of inequalities 

Ab < Ba < [(/l/b) -- Ab(1  + 2/-z)] (1 -- e0). 

From ( 5 ) ,  ( 7 ) ,  we o b t a i n  t h e  e q u a t i o n  

"~q'~'~ B1 (1 - -  e ) - -  *i  -{- Ab (l cos p - -  sin p), 
uw + &l l (1 + / 2 )  

in which the last term is a nonmonotonic function, determining the mutual relation between 
the parameters Ab, s of the harmonic component of the isotherm rate (9). 

2. Thermal Field Properties at a Strong Discontinuity Front. The conditions of dynam- 
ic compatibility [13] at discontinuity lines x = xj(t) of the thermal field are [14, 15] 

Vj - -  V, = Nj (qj - -  q,), q~ - -  q ,  = Nj (aj - -  u,),  Nj = x~ (t), ( 1 1 )  

where V'(T) = X/7. We use for u(x, t), q(x, t) equations of the type 

du (xj, 0 _ (u~ + Nu~)j 
dt 

and, acting similarly to [16], we obtain from the heat transport equation (i) and conditions 
(ii) expressions for the first derivatives with respect to coordinate 

946 



x / ] ( 1 2 )  

(13) 

The relaxing thermal field ahead of the discontinuity is selected in the form u, ~ const, 
q, = b,x -~ exp (--t/y,), u = y(T,). Besides, for the one-dimensional planar case (u = 0) 
on the background can be the inhomogeneous temperature field a(u,)(du,/dx) = -b,, q, = b, + 
b lexp(-t/Y), [x I < =, b,, bz, u - const. 

On the (u, q) plane the analog of the shock adiabat [13] is the curve H(uj, qj) = 0, 
being the set of uj, qj values satisfying conditions (ii) at the discontinuity for q, = 0, 
u, = const and some arbitrary Nj. Let s be the path length of this line. Using the result 
of [17], it can be verified that on the curve H = 0 the relations dNj/ds = 0, Nj = wj, 
being the analogs of Jouguet conditions of detonation theory, are satisfied only one at a 
time. If Nj - wj on the curve H = 0 changes sign at the point (uj, qj), at this point Nj 
has an extremum. The opposite statement is also correct [17]. 

Consider nonlinear media, whose thermophysical properties on both sides of the discon- 
tinuity are described by the relation 

w2--~s  wl-F2w~u,  w~=/=O, T6[T1,  T~]. ( 1 4 )  

This variant covers two important special cases: i) w z = 0, i.e., the parameters I ~ udz, 
c ~ ud2, y ~ ud3 are uniform power-law functions of temperature, d I = 1 + d 2 + d 3, wh~re, 
for example, the values dl = 5/2, d 2 = 0, d 3 = 3/2 correspond to a completely ionized plas- 
ma, traveling waves, and discontinuities in these media, as investigated in [18, 19]; 2) 
linear temperature dependence of the heat conduction coefficient 

%:=%~+%2T; c, ? - - c o n s t .  

This approximation can be applied to many materials. It follows from (ii), 
right-hand sides in (12), (13) are evaluated by means of the equations 

(15) 

(14) that t h e  

uy + u .  = (N~ - -  w~)/w~, (qy - -  q. ) /Nj  = [(Ny - -  w~)/w~] - -  2u, .  

Hence, in particular, we have 

N i - - w i = w 2 ( u , - - u j = w , - - N ~ ,  N i = 

(16) 

This implies that in the class of media (14) the squared velocity of the thermal shock wave 
is the arithmetic mean of the squared velocities of thermal perturbations ahead and follow- 
ing the discontinuity front. The Jouguet point is absent in using relation (14). 

= 0 and ahead of the discontinuity front the background is "cold," u, = 0, q, = If w z 
0, then 

~ (ux)j = -- + 5N' (0 + ~ -- , w~ (q~)j = 
x ] 

Hence follow the following qualitative conclusions: The geometric parameter v appears in 
terms depending on jump rates obeying a power law; if Nj(t) ~ No < ~, t ~ O, upon removal 
of the discontinuity front from the center of cylindrical or spherical symmetry the effect 
of u is monotonically reduced. 

For v = 0, c, y - const the generalization of relations (12), (13) to the case of de- 
rivatives of order n ~ 1 is 

[ ] = ? ,~+~= (N~-~Z) -~ N j ~ + T T + ( ~ + 2 ~ < ) ~ - ~  , ~,~ \ ~ ) j ,  (17) 
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drn dG ] 
: - 7F + Nj 7 + Nj + 2W <) , 

(18) 

s~ = ~ Ox n ] j , 202R~ : rlr,~ + -~x __~ Ox ---~ (hr._m-i). 
m=O 

Thus, if the displacement velocity of the thermal shock wave is determined experimen- 
tally, and one knows the parameters of the background over which this wave propagates, rela- 
tions (12), (13), (17), (18) make it possible to calculate the temperature and thermal 
flux behind the discontinuity front. 

3. Thermal Hysteresis at Strong Discontinuity Front. Let a one-dimensional planar 
(v = 0) strong discontinuity of the thermal field be displaced with velocity 

N j = B + A c o s ( k t + ~ ) ,  B > A > O ,  k > O  (19) 

in a nonlinear medium with thermophysical properties (14), (15); the background parameters 
are: u, = const, q, = 0; initially the discontinuity is located at the wall 

x w : O ,  q~qw(t) ,  t ~ O .  (20) 

It is seen from (16) that for w 2 > 0 we have a heating shock wave, uj > u,, while for w 2 < 
0 we have a cooling wave, uj < u, [14]. 

Using Eqs. (12), (13), (17), (18), we find the temperature field behind the jump front: 

q - - q  j =  ~ (x--x~) n, u - - u  j =  

These series are analytic functions for all Ix - xj[ e 0, t e 0, if the following conditions 
are satisfied 

x =  ~ k~ 3 < 1 ,  < k < l ,  ~ = B + A ,  A (B A)2__ 2 = - -  w , > 0 .  (22) 

Choosing the first M terms in (21), we obtain that the residuals of these series are bounded 
from above by the absolute value of the expression 

M 

DkJ- - - - - J - - -~ l exp (x j - - x )__ l__ ,~ (xY - -~n  [ 

n = l  

in which D equals, respectively, 8 and 6. For values [x -xj] ~ i we find that the absolute 
error of the discarded terms does not exceed [DkB4• w 2 A(I -- • M ~ i. The restrictions 
(22) in the set with discontinuity stability conditions [13] w, 2 < Nj 2 < wj 2 provide the 
following estimates of the parameters A, B, k, w,, for which this thermal process is rea- 
lized (t b < ~): 

I) if A > i0, kB 3 < i, then y-1 < k < Ba, 

O<m~ < min{(B--A)2--4AB; (B--A)  ~ -  10}; (23) 

2) i f  A > 10, kB 3 > 1, t hen  

max{?-L b-3} < k <  ~ ~-8, 

and inequality (23) remains in effect; 

3) if A < i0, ~ < I, then 

? - ~ < k <  ~ ~-~, 0<(B--A) 2 - 1 0 < w  2,<(B-A) a - 4 A B .  

Consider the variables ~ = we(ux)j, ~ = w2qj, characterizing the temperature and ther- 
mal flux gradients along the strong discontinuity lines. In the ~, ~ plane the dynamic 
hysteresis branch is represented parametrically: 
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Fig. 2. Example of dynamic 
thermal hysteresis branch at 
strong discontinuity front 
(dimensionless quantities). 

NjE[B--A, B@A], 

= N j  § 2 2 __ _ __ , = ~ ) ,  

? (Ni--m,) 

I t s  shape  f o r  A = 0 . 1 ,  B = 5, w, = 1, k = 5 .10  -2 , 7 = 103 i s  shown in  F i g .  2. The b r a n c h  
a r e a  i s  d e s c r i b e d  q u i t e  a c c u r a t e l y  by t h e  e q u a t i o n  

To s i m p l i f y  t h e  c a l c u l a t i o n  i t  was t a k e n  i n t o  a c c o u n t  t h a t  t h e  f u n c t i o n  h = (3N 9 - w , 2 ) /  
(Nj 2 - w, 2) v a r i e s  l i t t l e  o v e r  t h e  i n t e r v a l  i n v e s t i g a t e d .  I n  p a r t i c u l a r ,  f o r  t h i s  ex.3mple 
t h e  d e v i a t i o n  o f  h(N i )  f rom t h e  a p p r o x i m a t e  c o n s t a n t  v a l u e  h ~ 3 .083388  does  n o t  exceed  
0.115%. A p p l y i n g  (1D) and i n t e g r a t i n g  o v e r  a t ime  segment  e q u a l  t o  t h e  o s c i l l a t i o n  p e r i o d  
o f  t h e  d i s c o n t i n u i t y  r a t e ,  we o b t a i n  

Sj__ ~ (6uD~dt. 
7c 

0 

The t h e r m a l  f l u x  a t  t h e  w a l l  (20)  i s  o b t a i n e d  f rom (21)  f o r  x = 0, w i t h  qw ~ = qi  ~ I t  
i s  i m p o r t a n t  t h a t  in  t h e  f i r s t  a p p r o x i m a t i o n  a l r e a d y  t h e  e x p r e s s i o n  f o r  qw( t )  conta ln :~  t h e  
r e s o n a n c e  t e rm 2B2Ahkt s i n  ( k t  + 6 ) ,  c h a r a c t e r i z i n g  t h e  e x t e r n a l  t h e r m a l  a c t i o n  on t h e  medium. 

C o n c l u s i o n s .  For  c o n t i n u o u s  and d i s c o n t i n u o u s  t e m p e r a t u r e  f i e l d s  one can show t h e  f o l -  
l owing  f e a t u r e s  common f o r  a l l  o f  them, f o r  which  dynamic t h e r m a l  h y s t e r e s i s  i s  r e a l i : : e d :  
1) f a s t  f l o w  p r o c e s s e s  w i t h  t ime  s c a l e s  s h o r t e r  t h a n  t h e  r e l a x a t i o n  p e r i o d  o f  t h e  t h e r m a l  
f l u x ;  2) t h e  v e l o c i t y  o f  t h e  moving l i n e  ( i s o t h e r m ,  jump f r o n t ) ,  on which i r r e v e r s i b l e  v a r i -  
a t i o n s  o c c u r  o f  t h e  t h e r m a l  s t a t e  o f  t h e  m a t e r i a l ,  has  a h i g h - f r e q u e n c y  ha rmonic  component ;  
3) the area of the hysteresis branch is uniquely related to the relaxation component of the 
entropy output (i0). 

The results of the present study are useful for theoretical analysis of thermal pro- 
cesses in a number of contemporary energy devices, operating under substantially nonstation- 
ary conditions, when the possibilities of the classical model of thermal conductivity are 
too restricted for explaining fast-flowing nonlinear effects. 

NOTATION 

x, spatial coordinate; t, time; T, temperature; q, specific thermal flux; I, thermal 
conductivity coefficient; c, specific bulk heat capacity; u relaxation time of the thermal 
flux; a , temperature conductivity; w, propagation rate of small thermal perturbations; N, 
displacement velocity of the moving line; S, area of the hysteresis branch; o, entropy prod- 
uct per second per unit volume; v = 0, i, 2, a geometric parameter, corresponding to planar, 
cylindrical, and spherical symmetry; and O, oscillation period. The indices are: a bar 
over a symbol is for dimensional quantities; i, j, functional values on the isotherm and on 
the strong discontinuity line; b, scale of dimensional quantities; *, for medium parameters 
ahead of the discontinuity front; w, fixed wall; 0, initial value at t = 0; 0, for parame- 
ters on the thermal wave; the prime is ordinary differentiation with respect to the argument 
in parenthesis; and the independent variable in the subscript stands for partial differen- 
tiation. 
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